INDEX | 1. TECHNICAL INFORMATION | | |---|----| | 1.1. Main Features and applications 1.2. Mechanical dimensions, pin description and wiring scheme | | | 1.3. Axes definition | | | 2. INTRODUCTION TO CANopen | | | ○ 2.1. CiA 301 v.4.2.0 and Cia 410 specifications | 3 | | O 2.2. COB identifiers and communication objects | 3 | | O 2.3. Boot-up message | 4 | | 2.4. Network management objects (NMT) | 4 | | 2.5. Transmit Process Data Object (TPDO1) frame organization | 4 | | 3. HOW TO CONFIGURE IN360C | | | 3.1. Objects dictionary | 5 | | 3.2. SDO commands | | | 3.3. Node ID (2000h) and supported Baud Rates (2001h) | | | 3.4. Sensor operational mode (4001h) and device type (1000h) | | | 3.5. TPDO1 transmission type (1800h) | 11 | | 3.6. Transmit PDO1 mapping parameters (1A00h) | | | 3.7. Programmable digital filter – 3000h | | | 3.8. Single axis data format – 3002h | | | 3.9. Pitch and Roll Value Range in dual axis mode – 4000h | | | 3.10. Internal temperature (5000h) and surveillance (5001h) | | | 3.11. Resolution Object (6000h) | | | 3.12. Measured X axis value, angle inversion, X axis preset and offset values (6010h – 6011h – 6012h – 6013h) | | | 3.13. Measured Y axis value, angle inversion, Y axis preset and offset values (6020h – 6021h – 6022h – 6023h) | 19 | | 4. ERRORS | | | • 4.1. Error register (1001h) | 20 | | 4.2. Manufacturer error register (1002h) | 20 | | • 4.3. Pre-Defined error field (1003h) | 21 | | 4.4. Emergency frames (EMCY) | 21 | | 5. FAILURE MONITORING: HEARTBEAT AND NODEGUARDING / LIFEGUARDING | | | • 5.1. Hearbeat | 23 | | • 5.2. Nodeguarding and Lifeguarding | 23 | | 5 3 Status LED | 24 | # 1. TECHNICAL INFORMATION # 1.1. Main Features and applications - > 1D inclination sensor with measurement range 0-360deg - > 2D inclination sensor with measurement range up to ±60deg - > High Resolution: up to 0.001 deg - > Very fast sampling rate: up to 550 S/s - > 2nd order analog filter with 20Hz cut frequency - > Anti-Vibration flexible programmable filter - > Wide (7-40V) power supply range - > CANopen interface - + CiA DS-301, device profile 410 - + Programmable baud rate from 10kbps to 1Mbps - + One TPDO object - RTR frame based transmission - Cyclic transmission - Event-controlled transmission - Synchronized transmission - + SYNC Consumer - + EMCY Producer - + Failure monitoring via Heartbeat or Nodeguarding/Lifeguarding - > Very Easy Programming via CAN frames without additional tools - > IP67 protection class and industrial temperature range - > Factory Calibrated - > Several options on request: - + reduced temperature drift - + connector style - > Applications: - + Construction equipment - + Aerial work platforms - + Solar farms - + Agricultural and forestry machines - + Drilling and piling equipment # 1.2. Mechanical dimensions, pin description and wiring scheme All the dimensions below are reported in millimetres. IN360C sensor is available as standard version with M12 male/plug connector. | | Name | Function | |---|---------|--------------------------------| | 1 | SHIELD | Optional CAN shield (N.C.) | | 2 | VCC | Power Supply | | 3 | GND | Power Ground | | 4 | Data AH | CAN_H bus line (dominant high) | | 5 | Data BL | CAN_L bus line (dominant low) | IN360C has no internal bus line terminator resistor: the user must connect a 120Ω -terminator at the beginning and at the end of the CAN bus. ## 1.3. Axes definition Dual-axis mode up to +/-60° Zero degrees on single-axis mode are obtained by keeping the connector on the left, as shown in fig. 5. # 2. INTRODUCTION TO CANOPEN CANopen is the internationally standardized (EN 50325-4) CAN-based higher-layer protocol for embedded control systems. The set of CANopen specifications comprises the application layer and communication profile as well as application, device and interface profiles. IN360C has been CANopen certified by CiA GmbH. ## **2.1.** CiA 301 v.4.2.0 and Cia 410 specifications IN360C is compliant with CiA v.4.2.0, that specifies the CANopen application layer and communication profile. This specification includes the data types, encoding rules and dictionary objects as well as the CANopen communication services network management (services and protocols). It also specifies the CANopen communication profile, e.g. the physical layer, the predefined communication object identifier connection set, and the content of the Emergency, Timestamp, and Sync communication objects. IN360C is thus fully compliant with the specification given by the CiA 410 device profile for single and double-axis inclination sensors with 16-bit resolution. # 2.2. COB identifiers and communication objects CANopen communications occur via CAN-frames. A CAN-frame or Communication Object is a command sent to/ from the device. Its 11-bit identifier (called COB-ID) is divided in a 4-bit function code and 7-bit Node ID. At any hardware or software reset, COB IDs and the Node ID are loaded from the device objects dictionary (paragraph 3.1). | Message | Direction* | COB - ID | Object description | |------------------------|------------|-------------------|---| | NMT | RX | 00h | NMT services:
operational, pre-
operational, stop,
reset | | SYNC | RX | 80h | Sync object | | EMCY | TX | 80h +
Node ID | Emergency object | | TPDO1 | TX | 180h +
Node ID | Pitch, Roll and Internal
Temperature | | SDO | RX | 600h +
Node ID | Access to object dictionary | | SDO | TX | 580h +
Node ID | Reply to SDO request | | | | | Boot Up | | Boot Up /
Heartbeat | TX | 700h +
Node ID | Heartbeat: sent periodically if configured | (*) Direction is considered from the point of view of IN360C The Node ID default value (also indicated as NID) is OAh. ## 2.3. Boot-up message As IN360C is switched on, the boot-up procedure is initialized. IN360C sends a boot-up message with the following frame structure, according to CANopen DS301 v4.x: | COB-ID | Byte 0 | |------------|--------| | 700h + NID | 00h | # 2.4. Network management objects (NMT) As the initialization is completed, the device enters the Pre-operational state. The maximum time for a sensor initialization is 300ms. A malfunction may be caused if any data frame is sent before the end of the initialization: in this case an hardware reset of the sensor is necessary. In order to start getting data, IN360C must be set in Operational state. The figure below shows the NMT state machine of a generic CANopen device. NMT commands are used to change the machine state (e.g. to start and stop devices), detect remote device boot-ups and error conditions. The NMT frame structure used for NMT commands is reported below: | COB-ID | Byte 0 | Byte 1 | |--------|--------------|---| | 0000h | COMMAND CODE | 00h (broadcast) or Node
– ID (specific node) | Byte 0 must be replaced by one of the following command codes: | Command Code | Description | |---------------------|---| | 01h | Start remote node -> Enter the node OPERATIONAL state | | 02h | Stop remote node -> Enter the node STOP state | | 80h | Enter node PRE – OPERATIONAL state | | 81h | Reset Node | | 82h | Reset Communications | NMT command frames can be broadcast to all network nodes or sent to a specific node. The address must be written at Byte 1: 00h for the broadcast transmission, Node ID for a specific node transmission. ## 2.5. Transmit Process Data Object (TPDO1) frame organization The Process Data Object protocol is used to process real-time data and send information about actual inclinations on both axes. TPDO1 frame organization is reported below. TPDO1 frames have different structures depending on the operational mode. The frame structure for dual axis mode is reported below: | COB-ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |----------------|-----------------------------|--------------------------|-----------------------------|---------------|------------------------------------|----------|--------|--------| | 0x180 +
NID | Longitudina
value (LSB f | al inclination
first) | Lateral incl
(LSB first) | ination value | Internal temperature of the device | Not used | d | | Received data are in hexadecimal format and must be converted depending on the set resolution, stored at index 6000h of the objects dictionary (reported in paragraph 3.1). Measured inclination values are also stored into the objects dictionary according to CiA DSP-410: the longitudinal value (X axis) at index 6010h, the lateral value (Y axis) at index 6020h. The registers store the last measured angle values in a 2'complement fixed-point 16-bit-number. Together with inclination values, the device internal temperature (stored at address 5000h sub-index 00h) is transmitted as a 2's complement 8-bit number. ## Example: X-axis value at index 6010h is "F3B1h". For the 2's complement conversion, the number is equal to -3151d. The resolution stored at address 6000h and expressed in thousandths of degrees is 0Ah = 10d, that means resolution is of 0,01 degrees. The final actual angle is then calculated as -3151/100 = -31,51 degrees. The frame structure for single axis mode is similar, but with only one field for the inclination value. | COB-ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |----------------|-------------|-------------------|------------------------------------|---------|--------|--------|--------|--------| | 0x180 +
NID | Inclination | value (LSB first) | Internal temperature of the device | Not use | d | | | | According to CiA DSP-410, the inclination value is mapped at index 6010h, that is the field used for X-axis in the dual axis mode. This register stores the last measured angle value in a 2's complement fixed-point
16-bit-number. Together with the inclination value, the device internal temperature is also transmitted as a 2's complement 8-bit number. # 3. HOW TO CONFIGURE IN360C # 3.1. Objects dictionary The objects dictionary is the "identity card" of the device. It contains all the settings related to the device and communication procedures. The following paragraph shows its structure, where registers are organized in indexes, sub-indexes, descriptions, data type, access, default value and range. | Index | Sub
index | Parameter description | Data
type | Access | Default value | Range | Store | |-------|--------------|--|--------------|--------|---------------|---------------|-------| | 1000h | 0 | Device type (device profile 410, two axes) | UNS32 | RO | 2019Ah | 2019Ah 1019Ah | | | 1001h | 0 | Error register | UNS8 | RO | 0 | | | | 1002h | 0 | Manufacturer error reg | UNS32 | RO | 0 | | | | 1003h | Pre def | ined error field | | | | | | | | 0 | Number of errors | UNS32 | RW | 0 | | | | | 1 | New error code [i] | UNS32 | RO | | | | | | 2 | Error code [i-1] | UNS32 | RO | | | | | | 3 | Error code [i-2] | UNS32 | RO | | | | | | 4 | Error code [i-3] | UNS32 | RO | | | | | | 5 | Oldest Error code [i-4] | UNS32 | RO | | | | | 1005h | 0 | Sync COB-ID | UNS32 | RW | 80h | 12047 | YES | | 100Ah | 0 | Manufacturer firmware version | VSTR | const. | 0 | | | | 100Ch | 0 | Guard time [multiple of 1ms] | UNS16 | RW | 0 | 065535 | YES | | 100Dh | 0 | Life time factor UNS8 RW 0 | | 0255 | YES | | | | 1010h | Save pa | arameters | | | | | | | | 0 | Largest supported sub-index | UNS32 | RO | 1 | | | | | 1 | Save ALL parameters (value = 73617665h) | UNS32 | RW | 1 | | | | Index | Sub
index | Parameter description | Data
type | Access | Default value | Range | Store | |-------|--------------|---|--------------|-------------|---------------|-----------------------|-------| | 1011h | | Restore all | l paramete | ers | | | | | | 0 | Largest supported sub-index | UNS32 | RO | 1 | | | | | 1 | Reload ALL DEFAULT parameters
("load" = 6C6F6164h) | UNS32 | RW | 1 | | | | 1014h | 0 | COB-ID Emergency object | UNS32 | RO | 80h+NID | | | | 1015h | 0 | Inhibit time between two EMCY object transmission [multiple of 100us] | UNS16 | RW | 0 | 065535 | YES | | 1017h | 0 | Producer Heartbeat interval time [multiple of 1ms, 0 = disabled] | UNS16 | RW | 0 | 065535 | YES | | 1018h | | Identit | y Object | | | | | | | 0 | Largest supported sub-index | UNS8 | RO | 4 | | | | | 1 | Vendor ID | UNS32 | RO | 0 | | | | | 2 | Product code | UNS32 | RO | 0 | | | | | 3 | Revision number | UNS32 | RO | 0 | | | | | 4 | Serial number | UNS32 | RO | {device dep.} | | | | 1200h | | Server SDO | 1 parame | ters | | | | | | 0 | Largest supported sub-index | UNS8 | RO | 2 | | | | | 1 | COB-ID Client > Server | UNS32 | RO | 600h + NID | | | | | 2 | COB-ID Server > Client | UNS32 | RO | 580h + NID | | | | 1800h | | Transmit PDO1 comr | | | | | | | | 0 | Largest supported sub-index | UNS8 | RO | 5 | | | | | 1 | COB ID | UNS32 | RO | 180h + NID | | | | | 2 | Transmission type [synchronous, manufacturer specific] | UNS8 | RW | FEh | 0240 or 253
or 254 | YES | | | 3 | Inhibit time between two TPDO object [multiple of 100us] | UNS16 | RW | 0 | 065535 | YES | | | 4 | Reserved | UNS8 | RW | 0 | | | | | 5 | Event timer for cyclical transmission [multiple of 1ms, 0 = disabled] | UNS16 | RW | 0 | 065535 | YES | | 1A00h | | Transmit PDO1 mapping | parameter | rs (fixed m | apping) | | | | | 0 | Largest supported sub-index | UNS8 | RO | 3 | | | | | 1 | Inclination value X-axis parameters | UNS16 | RO | 60100010h | | | | | 2 | Inclination value Y-axis parameters | UNS16 | RO | 60200010h | | | | | 3 | Device internal temperature [°C] | UNS16 | RO | 50000008h | | | | 2000h | 0 | Node ID | | RW | | 1127 | YES | | 2001h | 0 | Baud Rate [kBit\s] | UNS16 | RW | 500 | 101000 | YES | | 3000h | 0 | Filtered samples | UNS16 | RW | 1000 | 11000 | YES | | 3001h | | TPDO1 transmission | | | 0 | | | | | 0 | Largest supported sub-index | UNS8 | RO | 3 | | | | | 1 | Enable/Disable (1/0) TX on inclination change | UNS8 | RW | 0 | 1 or 0 | YES | | | 2 | Minimum inclination change for X axis | UNS16 | RW | 100 | {res. dep.} | YES | | | 3 | Minimum inclination change for Y axis | UNS16 | RW | 100 | {res. dep.} | YES | | 3002h | 0 | Single axis data format (0:[0;360]°; 1:±180°) | UNS8 | RW | 0 | 1 or 0 | YES | | 4000h | ^ | Pitch and Rol | | - | 2 | | | | | 0 | Largest supported sub-index | UNS8 | RO | 3 | for 1 2 | 1/50 | | | 1 | X range | UNS16 | RW | 30000 | {res. dep.} | YES | | | 2 | Y range | UNS16 | RW | 30000 | {res. dep.} | YES | | 40041 | 3 | Enable/Disable (1/0) User Range | UNS8 | RW | 0 | 1 or 0 | YES | | 4001h | 0 | Sensor operational mode 2 Axes/1 Axis | UNS8 | RW | 0 | 00h or AAh | YES | | 5000h | 0 | Device Internal temperature [°C] (2's compl.) | INT8 | RO | | | | | Index | Sub
index | Parameter description | Data
type | Access | Default value | Range | Store | |-------|--------------|---|--------------|------------|---------------|------------------|-------| | 5001h | | Surveillance of the dev | ice's intern | ial tempei | rature | | | | | 0 | Largest supported sub-index | UNS8 | RO | 3 | | | | | 1 | Enable/Disable (1/0) temperature surveillance | UNS8 | RW | 0 | 1 or 0 | YES | | | 2 | Lower temperature limit [°C] (2's complement) | INT8 | RW | -30 | -55+120 | YES | | | 3 | Upper temperature limit [°C] (2's complement) | INT8 | RW | 75 | -55+120 | YES | | 5555h | | Reserved for calibra | tion and d | ebug valu | es | | | | 5544h | | Reserved for calibra | tion and d | ebug valu | es | | | | 6000h | 0 | Resolution [multiple of 0.001°] | UNS16 | RO | 1 | 1, 10, 100, 1000 | YES | | 6010h | 0 | Measured X axis value (2's complement) | INT16 | RO | | {type dep.} | | | 6011h | 0 | Inversion of X axis range | UNS8 | RW | 0 | 1 or 0 | YES | | 6012h | 0 | X axis preset value (2's complement) | INT16 | RW | 0 | {para. 3.12} | | | 6013h | 0 | X axis offset value (2's complement) | INT16 | RW | 0 | {para. 3.12} | | | 6020h | 0 | Measured Y axis value (2's complement) | INT16 | RO | | {type dep.} | | | 6021h | 0 | Inversion of Y axis range | UNS8 | RW | 0 | 1 or 0 | YES | | 6022h | 0 | Y axis preset value (2's complement) | INT16 | RW | 0 | {para. 3.13} | | | 6023h | 0 | Y axis offset value (2's complement) | INT16 | RW | 0 | {para. 3.13} | YES | #### 3.2. SDO commands SDO commands (Service Data Objects) let the user read or modify the objects' dictionary registers. COB-IDs used for SDO commands are stored at index 1200h of the objects dictionary. IN360C firmware version 2.x.y supports the segmented data transfer, as explained by Cia 301 specification. Due to its asynchronous functioning, SDO commands being too frequently used could affect the inclination measure. # 3.2.1. How to read a register SDO request frames let the user read data from the object dictionary. The frame structure is shown in the table below. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |------------|-------------|-----------|------------|-----------|----------|----------|----------|----------| | 600h + NID | Data length | Index LOW | Index HIGH | Sub-Index | Not used | Not used | Not used | Not used | Byte 0 contains the indication of data length as shown in the table below: at request "any size length" = 40h must be used to avoid request errors. | Data length | Value | |-----------------|-------| | Any size length | 40h | | 1 | 4Fh | | 2 | 4Bh | | 4 | 43h | | STRING | 41h | IN360C answers with a response SDO frame, whose structure shown below is the same as the request frame. Byte 0 shows the actual length of data allocated from Byte 4 to Byte 7. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |------------|-------------|-----------|------------|-----------|------------------------|--------|--------|--------| | 580h + NID | Data length | Index LOW | Index HIGH | Sub-Index | Read DATA (LSB to MSB) | | | | #### Example: IN360C is the model that can be set either for a single-axis or double-axis measure. Let us check the set operational mode. The information to be read is contained at index 4001h, sub-index 00h. Please set the data length of the request frame to the generic value (40h), COB-ID is 600h+Node-ID (table 3). Node-ID is the default value 0Ah. The resulting frame will be the following: | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 Byte 7 | |--------|--------|--------|--------|--------|---------------| | 60Ah | 40h | 01h | 40h | 00h | - | The correct SDO response data frame will be the following: | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 Byte 7 | |--------|--------|--------|--------|--------|---------------| | 58Ah | 4Fh | 01h | 40h | 00h | 00h | COB-ID is 580h+Node-ID. Byte 0 = "4Fh" indicates that the frame contains 1 byte of data. Byte 1, 2 and 3 report index and sub-index. Data is equal to "00h", that means the sensor is set in 2-axis operational mode. #### 3.2.1. How to write into a register SDO download request frames are used to write a certain parameter into the object dictionary. Object index and sub-index must be specified at Byte 1, 2 and 3. Data to write can be 1byte, 2byte, 3byte or 4byte long. The first byte (Byte 4 at Table 14) is the least significant byte. Firmware version 2.0.0 supports the segmented data transfer, as explained by Cia 301 specification. The frame structure is shown in the table below. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |------------|-------------|-----------|------------|-----------|-----------|--------|--------|--------| | 600h + NID | Data length | Index LOW | Index HIGH | Sub-Index | DATA TO V | | | | Byte 0 contains the data length indication, so the user must choose one of
the values reported in the rable below: | Data length | Value | |-------------|-------| | Any length | 22h | | 1 byte | 2Fh | | 2 bytes | 2Bh | | 4 bytes | 23h | A SDO download response frame is sent by IN360C to confirm that the request has succeeded. The structure is shown in the table below. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |------------|--------|-----------|------------|-----------|--------|--------|--------|--------| | 580h + NID | 60h | Index LOW | Index HIGH | Sub-Index | 00h | 00h | 00h | 00h | #### Example: Let us set IN360C (Node-ID = OAh) in 2-axis mode and limit the X range to 10 degrees 1. Send a SDO command to modify index 4001h, s.i. 00h, and write value 00h (2-axis mode). | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 01 | 40 | 00 | 00 | - | - | - | *In case of correct request, the following answer is received:* | 58A | 60 | 01 | 40 | 00 | 00 | 00 | 00 | 00 | |-------|----|----|----|----|----|----|----|----| | 30, (| 00 | 01 | 10 | 00 | 00 | 00 | 00 | 00 | 2. Now set the X-measuring range at index 4000h. First enable the user range (s.i. 03h): | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 00 | 40 | 03 | 01 | - | - | - | *In case of correct request, the following answer is received:* | 58A | 60 | 00 | 40 | 03 | 00 | 00 | 00 | 00 | |-----|----|----|----|----|----|----|----|----| 3. Set the X-range to 10 degrees: pay attention that the value depends on the actual resolution. For a resolution of 0.01 degrees (index 6000h, s.i. 0, value = 10 = Ah), the value to write is 1000 = 3E8h. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 00 | 40 | 01 | E8 | 3 | - | - | In case of correct request, the following answer is received: | 58A | 60 | 00 | 40 | 01 | 00 | 00 | 00 | 00 | |-----|----|----|----|----|----|----|----|----| 4. To validate modifications, save the set parameters into the EEPROM as explained in paragraph 3.2.3 and reset the device. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 10 | 10 | 01 | 73 | 61 | 76 | 65 | # 3.2.2. SDO abort codes If a SDO request or a SDO download request frame fails, IN360C answers with a SDO abort message reporting the error sources. The SDO abort frame structure is reported below. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |------------|--------|-----------|------------|-----------|-----------|--------------|--------|--------| | 600h + NID | 80h | Index LOW | Index HIGH | Sub-Index | SDO abort | code (LSB to | MSB) | | The transmitted data are one of the error codes reported in the following table. | SDO abort code | Bytes 47 | Type of failure | |----------------|--------------------|--| | 0504 0001h | 01h; 00h; 04h; 05h | SDO command not valid or unknown | | 0601 0002h | 02h; 00h; 01h; 06h | Attempt to write a read-only object | | 0602 0000h | 00h; 00h; 02h; 06h | Object does not exist in the object dictionary | | 0604 0043h | 43h; 00h; 04h; 06h | General incompatibility reason | | 0607 0010h | 10h; 00h; 07h; 06h | Data type does not match, length of service does not match | | SDO abort code | Bytes 47 | Type of failure | |----------------|--------------------|--| | 0609 0011h | 11h; 00h; 09h; 06h | Sub-index does not exist | | 0609 0030h | 30h; 00h; 09h; 06h | Parameter invalid value (download only) | | 0609 0031h | 31h; 00h; 09h; 06h | Value of written parameter too high | | 0609 0032h | 32h; 00h; 09h; 06h | Value of written parameter too low | | 0800 0000h | 00h; 00h; 00h; 08h | General Error | | 0800 0020h | 20h; 00h; 00h; 08h | Data cannot be transferred or stored to/in the application | | 0800 0024h | 24h; 00h; 00h; 08h | No data available | #### 3.2.3. SAVE ALL procedure (1010h) and reset commands As a register of the objects dictionary is modified, a SAVE ALL procedure is needed to store data into the non-volatile memory (EEPROM). The word "save" must be written into index 1010h, sub-index 01h from the least significant byte to the most (the resulting word is "73617665h"). Modifications are thus valid only after a hardware or software reset of the device. The software resets reported in paragraph 2.5 are the following: - Node reset (NMT command code 81h): such command resets the whole node and it is recommended for every saving procedure. - Communication reset (NMT command code 82h): only the communication parameters are reset, so objects related to transmission and measure settings are not reset. # 3.2.4. Restoring all parameters (1011h) The default configuration of the objects dictionary can be restored by writing the word "LOAD" in ASCII format (="6C6F6164h") in the *Restore all parameters* object at index 1011h sub-index 01h. Node-ID (2000h), Baud rate (2001h) and Sensor operational mode (4001h) will not be affected by this command, as they must be changed manually. # 3.3. Node ID (2000h) and supported Baud Rates (2001h) Every change applied to the Node ID (index 2000h s.i. 00h) and to the Baud rate (index 2001h s.i. 00h) is effective only after the SAVE ALL procedure (see paragraph 3.2.3) and the node reset. After the reset, the COB IDs are recomputed according to the pre-defined connection set objects. Node ID and Baud rate default values are reported in the table below. | Default Node ID | 22 | |-------------------|------------| | Default Baud Rate | 500 kbit\s | IN360C is designed to support different CAN baud rates, referring to the CANopen Draft Standard 301. The supported baud rates are reported in the following table. The exact value must be written in hexadecimal format into index 2001h, sub-index 0h. | Supported Baud Rates (kbit/s) | 10 | 20 | 50 | 125 | 250 | 500 | 800 | 1000 | |-------------------------------|----|----|----|-----|-----|-----|-----|------| |-------------------------------|----|----|----|-----|-----|-----|-----|------| NODE ID and Baud rate are not restored by the Restore all parameters command set at index 1011h, and they have to be changed manually. ## 3.4. Sensor operational mode (4001h) and device type (1000h) IN360C version can be configured for 1 or 2 axis operational mode by modifying the register at index 4001h sub-index 00h. IN360C have fixed operational mode, respectively 1 and 2 axis mode. IN360C is at zero degrees as the connector is kept on the left In dual-axis mode (IN360C), please follow the arrows indicated on the top of the device: by lowering the inclinometer along a specific arrow, the measured value increases following the signs indicated on the la-bel. The example below reports the procedure to switch from 2 to 1 axis mode. #### Example: - 1. Write the value "AAh" into index 4001h sub-index 00h. - 2. Send a "SAVE ALL" SDO command - 3. Reset the device. Only after resetting the IN360C, the device type object value (address 1000h s.i. 00h) changes from 2019Ah (2 axes with max resolution of 16 bit) to 1019Ah (1 axis with max resolution of 16 bit) according to CiA device profile for in-clinometers (CiA410). When set for single axis mode, all the objects related to the Y-axis are disabled and cannot be accessed for reading or writing procedures, otherwise a SDO abort command is received (0602 0000h). # 3.5. TPDO1 transmission type (1800h) IN360C implements different types of transmission, which can be set at index 1800h, sub-index 02h. Values from 0d to 240d (0h to F0h) are used for synchronous transmissions, 253d for the RTR transmission, and 254d for asynchronous types.- # 3.5.1. Synchronous transmissions and SYNC frames The synchronous transmission occurs through SYNC frames, that are sent by the master with the frame structure reported in Table: The default value of the Sync COB-ID object is "80h" and it is stored at index 1005h, s.i. 0h of the objects dictionary. When more than one sensor are connected to the CAN bus, each sensor must have a different Sync COB-ID to correctly synchronize the communication. Available values for Sync COB-ID objects are in the range [1;2047]d: low values are suggested in order to assign a higher priority to the message on the bus. If different devices have the same Sync COB-ID object, the SDO abort code 0609 0030h will be received. After any modification, the SAVE ALL procedure is re-quired for validation. Besides the COB-ID definition, the transmission must be programmed at index 1800h, sub-index 02h. The stored value (from 1 to 240d) is the number of SYNC frames that are received by IN360C before answering with the TPDO1 frame. # Example: Consider that one of the IN360C connected to the bus have a Sync COB-ID object = "2Bh" and the transmission type is set to "5h". This means that the master must send the frame "2Bh" 5 times, in order to get the TPDO1 frame from the specific IN360C. The transmission type can be set to 0d for an acyclic synchronous transmission. This configuration makes the IN360C send the TPDO1 frame only after an event occurrence (e.g. event timer, transmission on inclination change, etc.) and the SYNC frame. #### Example: Consider the following time line: T0: Event T1: SYNC frame T2: TPDO1 transmission T0, T1 and T2 are progressive instants. Only after an event occurrence and the reception of a SYNC frame, the TPDO1 frame will be transmitted. # 3.5.2. RTR: Remote Transmit Request RTR is a request that the NMT master performs directly to a specific CANbus node. IN360C implements RTRs for TPDO1 transmissions and
Lifeguarding/Nodeguarding (see paragraph 5.2). Upon reception of a RTRand, if it is in operational mode the IN360C answers with the object requested by the RTR COB-ID. In case of a TPDO1 request, the COB-ID that is sent by the master is the following: COB ID 180+Node ID RTR can be sent at any time by the master: IN360C will answer even if other transmission types are set. In order to make the IN360C answer only to RTRs, index 1800h, sub-index 2 must be set to 253d. RTRs are the less recommended type of transmission in a CAN network. # 3.5.3. Asynchronous transmissions Asynchronous transmissions are triggered by an event occurrence, i.e. an inclination change or an event timer. This type of transmission is set by writing 254h (=FEh) into index 1800h, s.i. 02h. # 3.5.3.1. Transmission on inclination change (3001h) The transmission on inclination change is enabled by setting the value at index 3001h, s.i. 01h to "01h". TPDO1 is transmitted as the inclination changes of at least the value stored into registers 3001h s.i. 02h for X axis and s.i. 03h for Y axis, depending on the resolution indicated at index 6000h, s.i. 00h. TPDO1 transmission on inclination change oc-curs only if the node is in operational state. In order to prevent CAN bus flooding, the inhibit timer is suggested to be activated and the event timer deactivated. #### Example: If resolution is set to 1 degree (value =1000d =3E8h) and the minimum inclination value at index 3001h, s.i. 02h is set to "07h", TPDO1s are transmitted every time the inclination on X axis changes by more than T degrees. Transmission on inclination change is also active for single axis [0-360deg] mode. In this case only the sub-index value for X-axis is active, while the respective for the Y-axis is disabled. The maximum available resolution for the single axis mode is hundredths of degree. As the resolution is modified, the transmission is deactivated in order to prevent bus overflows, and must be reactivated at the end of the resolution setting. # Example: Resolution is set to 1 degree. Minimum inclination change for X axis is set to "OAh". So TPDO1s are transmitted only at changes greater than 10 degrees. Let us modify the resolution to 0.001 degrees. If the TPDO1 hadn't been automati-cally deactivated, transmissions at changes of 0.01 degrees would have happened, leading to the CAN bus overflow. To prevent CAN bus overflows, the setting of inhibit timer is suggested (see paragraph 3.5.4). #### 3.5.3.2. Transmission on event timer A TPDO1 can be temporally forced by an event timer and transmitted whether the measured inclination changes or not. The value stored at address 1800h sub-index 05h represents the period between two TPDO1 transmissions, values are in the range [1;65535] ms, with the fixed resolution of 1ms. Default time is 0ms, which means that the timer is deactivated and TPDO1 is transmitted only at inclination changes. A minimum value of 50ms is suggested in order to get correct data (please note that IN360C has an internal hardware low-pass filter with cut-frequency = 20Hz). #### 3.5.4. Inhibit timer In order to prevent CAN bus flooding due to continuous frequent transmissions, an inhibit timer can be set. The inhibit timer is configured at index 1800h, s.i. 03h of the objects dictionary. Available values are multiple of 100us in the range [0; 65535]. The value indicates the period during which no TPDO1 will be transmitted. The default value is "0". The inhibit timer setting can be done only if TPDO1 transmission is deactivated, by writing "8000 0180h + Node ID" (CiA 301 specifies that Bit31 of the COB-ID must be set to "1") into index 1800h, s.i. 01h. As the inhibit timer is set, the TPDO1 transmission can be re-activated. If transmission on inclination change is used, an inhibit timer greater than 0ms is suggested in order to prevent CAN bus saturations. # 3.6. Transmit PDO1 mapping parameters (1A00h) Registers at index 1A00h store the mapping parameters of the TPDO1s. The default value at sub-index 1, referred to the TPDO1 of X-axis, is "60100010h": - The first part refers to the register index where the last measured value on X-axis is stored (6010h); - The second part is the value resolution stored at index 6000h, s.i. 00h. The mapping parameters for Y-axis are stored into sub-index 02h and have the same structure of sub-index 01h. ## 3.7. Programmable digital filter – 3000h When the environment is vibrating, noise reduction is necessary in order to get stable measure and correct data. IN360C features two filters that reduce the environmental noise effects: the first is an active 2nd order analog filter, with a cut-off frequency of 20Hz (fixed by hardware layout), the second is a software filter, that implements a moving average on acquired data. The average is programmable by the user, who can set the number of averaged samples at index 3000h, sub-index 00h. The default value (03E8h) corresponds to the maximum number (1000 samples). If set to 01h, the filter is deactivated. The value is valid both for one axis and two axis mode. The SAVE ALL procedure is necessary to validate modifica-tions. The optimal number of samples to be averaged depends on the application and is a trade-off between measure stability and sensor response time: the higher the number of averaged samples, the lower the response time, but the measure is more stable. The filter frequency response is strictly related to the number of averaged samples and the sample rate, which is fixed to 550 samples per second. Sample rate is guaranteed in normal run conditions, when transmission commands (TPDO1) and SAVE ALL commands are not too frequent. The formula of filter frequency response is reported below: $$H[f] = \frac{\sin(\pi \times f \times M)}{M \times \sin(\pi \times f)}$$ The plot of the filter frequency response is a sync graph in the normalized frequency domain (see figure below). The normalized frequency domain runs from 0 to 0.5 rad/sample. For a normalized frequency of 0 rad/sample, the frequency response H[f] is equal to 1. To convert a specific vibration/noise frequency (expressed in Hz) into a normalized frequency, the formula reported below is used: $$f_{NORM} = \frac{f\left[\frac{cycles}{sec}\right]}{S_{R}\left[\frac{Samples}{sec}\right]} = \left[\frac{cycles}{Samples}\right] = \left[\frac{radians}{Samples}\right]$$ $$f\left[\frac{cycles}{\sec}\right] \longrightarrow \text{Noise frequency expressed in Hz}$$ $$S_R\left[\frac{Samples}{\sec}\right] \longrightarrow \text{Sampling rate (constant at 550 samples/s for IN360C)}$$ $$f_{NORM}\left[\frac{cycles}{samples}\right] \longrightarrow \text{Normalized frequency}$$ The filter frequency response can be plotted for different numbers of filtered samples. In Figure above, the Y-axis indicates the response gain, while the X-axis the frequency in Hz. Different noise frequencies can be cut by correctly choosing a specific number of samples. The number of filtered samples must be set as a trade-off between response stability and response time. The higher the filter, the shorter the time to wait for a correct measure. The graph below reports the response time, calculated as 5τ , versus the number of filtered samples. The response time (or damping time) is the ratio between the number of averaged samples and the sampling time. The sampling time is the inverse ratio of the sampling rate. #samples = Td/Ts, where Td is the damping time and Ts is the sampling time (fixed at 1.82ms) In relation to the graph reported in figure above, if a damping time of 1 second is required, the number of average samples to be set is: 1000/1.82 = 549 samples. The graph below shows the step response in the time domain. #### Example: The following example shows a simple procedure to set the filter properly, depending on the final application. - 1. Selection of the maximum number of filtered samples. Supposing that 50ms is the maximum acceptable re-sponse time, the maximum number of samples is equal to 50ms/1.82ms = 27 samples. The filter must be set to less than 27 samples. - 2. Now let us suppose that the main noise frequency due to vibration is 50Hz. At this frequency the characteristic H[f] is null for multiples of 11 samples. Following the condition found at point 1, quantities of 11 or 22 samples are suggested: the user can choose for a better response time (with 11 samples) or a better band-pass filter (22 samples). - 3. Some practical tests and a comparison to check the theoretical calculations are recommended. ## ◆ 3.8. Single axis data format – 3002h The feature is valid only for IN360C, as it allows the user to set the single axis data format. If set to "0", data transmitted via TPDO1 and stored into index 6010h are in the range 0...360deg. If set to "1", the range goes from -180° to +180°. ### Example: Let us consider the IN360C with a 0.01deg resolution. The register at index 3002h is set to "0" and the value transmitted by the TPD01 is 80E0h = 32992, that means 329,92 deg; in relation to the range 0...360deg, it means a negative inclination of about 30deg. Set the index 3002h to value "1" and save all data. After the reset the value transmitted by the TPD01 is F440h = -3008d that means -30,08 deg. ## ◆ 3.9. Pitch and Roll Value Range in dual axis mode – 4000h The feature is valid only for dual-mode of measurement on IN360C. Registers at index 4000h allow the user to fix the operative ranges for X and Y axes. The values stored into sub-indexes 01h and 02h are unsigned and their resolution is stored at index 6000h. The feature works only for the dual-axis operational mode and can be enabled at sub-index 03h (write the value 01h). When one of the two set thresholds are exceeded, an *EMCY frame* relative to the axis affected by the error is sent. If disabled, X and Y range values are kept equal to the absolute operative range of ±60deg. User-defined ranges are considered symmetric to the sensor relative zero that is obtained by adding the offset
value to the absolute zero. The ranges summed to the relative zero (initial offset) must be lower than the sensor absolute opera-tive range (±60deg): if the measured angle value is greater than +60deg or smaller than -60deg, it is automatically clipped (see example below). #### Example: - Set offset for X axis (object 6013h) = -45deg - Set offset for Y axis (object 6023h) = +15deg - Set range for X axis = ±30deg - Set range for Y axis = ±15deg In this case the X-axis relative zero is equal to the +45deg absolute angle. In order to avoid EMCY frames, the inclination on X axis must be in the range: X MAX = [60 deg - 45 deg] = +15 deg (+60 deg absolute angle) X MIN = - 30deg (+15deg absolute angle) The maximum measurable value on X-axis is +15deg instead of +30deg because of the actual sensor absolute operative range. The Y-axis relative zero is equal to the -15deg absolute Y angle. In order to avoid EMCY frames, the inclination on Y axis must be in the range: Y MAX = +15deg (Odeg absolute angle) Y MIN = - 15deg (-30deg absolute angle) X-axis range is asymmetric to the measured zero while Y-axis range is symmetric, as it is included in the absolute range of ± 60 deg. Pitch and roll ranges depend on the resolution set at index 6000h: if greater than 0.001deg, ranges can be specified from +/-5deg up to +/-60deg. If the resolution is set to 0.001deg, ranges can only be specified up to +/-30deg. The mentioned feature can even be exploited in order to use the IN360C as an "ON/OFF" device: if the event timer is deactivated (index 1800h, s.i. 05h, value=0h) and the device is set in operational mode, the CAN master will only re-ceive EMCY frames at any thresholds exceeding. ## 3.10. Internal temperature (5000h) and surveillance (5001h) The device internal temperature is transmitted by the TPDO1 as information on node operational condition. It is also stored at dictionary index 5000h sub-index 00h. A surveillance of the device internal temperature can be enabled at index 5001h sub-index 01h (value = 01h to enable, value = 00h to disable). The lower and upper temperature thresholds are written into the sub-indexes 02h and 03h in 2's complement 8-bit numbers. Resolution is units of Celsius degrees. As the internal temperature goes out of the set range, an *EMCY frame* is transmitted and the three error registers are thus updated. The control on the internal temperature is done every second. Note that the two thresholds can go from -55°C to +120°C but the maximum operating range of the sensor is between -40°C and +85°C. Default values are -30°C and 75°C. ## 3.11. Resolution Object (6000h) The resolution is set at index 6000h sub-index 00h and is expressed in thousandths of degree. Available values are: | Resolution | | Object 6000h sub-index 00h value | | | | | |------------------------|---------------|----------------------------------|-------|--|--|--| | Entire degree | [1deg] | 1000d | 03E8h | | | | | Tenths of degree | [1deg / 10] | 100d | 0064h | | | | | Cents of degree | [1deg / 100] | 10d | 000Ah | | | | | Thousandths of de-gree | [1deg / 1000] | 1d | 0001h | | | | Angle data are 16-bit numbers in 2's complement format that limit the measurable range to ± 30 degrees as the resolution of thousandths of degree is selected. The whole angle range of ± 60 degrees is instead measurable with the other three configurations. Default resolution is thousandths of degree. # 3.12. Measured X axis value, angle inversion, X axis preset and offset values (6010h – 6011h – 6012h – 6013h) #### 3.12.1. Dual-axis mode The measured value for X-axis angle is written at index 6010h sub-index 00h. Value format is a 2's complement 16-bit number and depends on the stored resolution. Value sign can be inverted by writing 01h into the object 6011h sub-index 00h. The object at address 6013h, sub-index 00h represents the offset value for X axis: it is a 2's complement 16-bit number that is added to the absolute measured angle to get the relative angle stored as Measured X value: Measured X angle 6010h = XACQUIRED ABSOLUTE ANGLE + X Offset 6013h The offset can be directly set through a SDO command. It is also automatically modified when the preset value is set. The preset value is meant as the measured angle to be obtained at a specific inclination. Value format is a 2's complement 16-bit number stored at index 6012h s.i. 00h (for X axis). The preset value is subtracted to the absolute measured angle and the result stored as offset value into index 6013h. # Example: Let us consider the inclination of +13deg on X-axis. In order to set the zero at +7deg, it is necessary to indicate to the sensor the new inclination to read. So a preset value of +6deg must be set. The preset value can even be used as **auto-zero command**: if the value is set to 00h, the measured X-axis value becomes 00h and the offset is updated with the difference between the preset value (00h) and the actual inclination. It is strongly recommended to clear the offset value stored at address 6013h before setting a preset value, otherwise problems on the offset computation may occur. ## 3.12.2. Single-axis mode In single-axis mode the inclinometer stores the data into the registers relative to the X-axis at indexes 6010h, 6012h and 6013h, as explained in the paragraph above. The inversion object at index 6011h behaves depending on the data format set at index 3002h. If the measure range is [-180;180] deg, the inversion mode behaves as explained in the previous paragraph. Otherwise, if the range is [0;360] deg, the sign inversion inverts the sense of rotation with respect to the X axis, as shown in Table. #### Example: Let us suppose that we read an inclination of 35deg. The value at index 3002h is 00h (so the range is [0;360]deg). Ena-ble the inversion of X axis by writing 01h into index 6011h, s.i. 00h. The new read inclination is now 325deg. # 3.13. Measured Y axis value, angle inversion, Y axis preset and offset values (6020h – 6021h – 6022h – 6023h) The measured value for Y-axis angle is written at index 6020h sub-index 00h. Value format is a 2's complement 16-bit number and depends on the stored resolution. Value sign can be inverted by writing 01h into the object 6021h sub-index 00h. The object at address 6023h, sub-index 00h represents the **offset** value for Y axis: it is a 2's complement 16-bit number that is added to the absolute measured angle to get the relative angle stored as Measured Y value: Measured Y angle 6020h = YACQUIRED ABSOLUTE ANGLE + Y Offset 6023h The offset can be directly set through a SDO command. It is also automatically modified when the preset value is set. The preset value is meant as the measured angle to be obtained at a specific inclination. Value format is a 2's complement 16-bit number stored at index 6022h s.i. 00h (for Y axis). The preset value is subtracted to the absolute measured angle and the result stored as offset value into index 6023h. The preset value can even be used as **auto-zero command**: if the value is set to 00h, the measured Y-axis value becomes 00h and the offset is updated with the difference between the preset value (00h) and the actual inclination. It is strongly recommended to clear the offset value stored at address 6023h before setting a preset value, otherwise problems on the offset computation may occur. The mentioned registers are disabled for the single axis mode of measurement. ## 4. ERRORS CANopen manages error conditions through the transmission of Emergency frames and the update of specific registers in the objects dictionary. # • 4.1. Error register (1001h) As an error occurs, the error register at index 1001h (1-byte long) is updated. Each bit in the register is associated with a specific error, concerning working conditions, communications or internal status. The register is accessible only for reading: depending on the error source, one of the bits of the error register is set to "1". The bit scheme below shows the error register format: | ERROR REGISTER FIELD STRUCTURE | | | | | | | | | | | |--------------------------------|----------|---------------------------|------------------------|----------------------|----------|----------|---------------------------|--|--|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | Hardware
Error | Not Used | Profile Specific
Error | Communication
Error | Temperature
Error | Not Used | Not Used | At least one active error | | | | The 8 bits are activated at the following conditions: - Bit0: everytime an error condition occurs. - Bit3: as the temperature exceeds one of the thresholds stored at registers 5001h. - Bit4: as a communication error occurs and the Communication Error Field is modified (see the para-graph below). - Bit5: as it exceeds either the user-defined range stored at register 4000h or the absolute sensor range. - Bit7: as an hardware error occurs either on the EEPROM CRC32 control or on the sensor self-test pro-cedures performed at any device reset. # 4.2. Manufacturer error register (1002h) The manufacturer error register shows the recent state of all detectable errors. It reports information about the commu-nication and the device functioning. Each bit refers to a specific error that is active if set to "1". The last 16 bits are also sent in the manufacturer specific part of the EMCY object shown at paragraph 4.4. The manufacturer error register structure is shown in the table below: | | ERROR REGISTER FIELD STRUCTURE | | | | | | | | | | | | | | |---|--------------------------------|--|--|--|--|--|--|--|---|---------|----------|----|--|--| | Bit31Bit16 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 | | | | | | | | | | Bit0 | | | | | | Not Used Communication Error Field | | | | | | | | | D | evice E | rror Fie | ld | | | | | Communication Error Field | | | | | | | | | | | |
|-------------------|---------------------------|--------|--------|--------|--------------------------|---------------------------|------------------------------|--|--|--|--|--| | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | | | | | | | Guarding
Error | | Not | Used | | Receive queue
overrun | CAN BUS-OFF state reached | CAN WARNING
limit reached | | | | | | | | PRE-DEFINED ERROR FIELD STRUCTURE | | | | | | | | | | | | |-----------------------------|-----------------------------------|-------|-----------------------|----------------------|--------------------------|--------------------------|----------|--|--|--|--|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | | | HW error (sensor self test) | Not Used | | CRC32 memory
error | Temperature
error | Sensor Error
Y - Axis | Sensor Error
X - Axis | Not Used | | | | | | ### Example: If the sensor position exceeds the longitudinal or lateral inclination threshold stored in the object dictionary at index 4000h (see paragraph 3.9), Bit1 or Bit2 is set to 1 depending on the affected axis. # 4.3. Pre-Defined error field (1003h) The pre-defined error field at index 1003h stores the last 5 occurred error conditions. Sub-index 00h counts the number of occurred errors, which are chronologically stored into the consecutive objects: the latest at sub-index 01h, the oldest at sub-index 05h. As a new error condition occurs and the register is full, the oldest error condition is deleted and the new error enters at sub-index 01h. The pre-defined error field has the structure reported in the table below | Bit31Bit16 Addition | nal Information Field | Bit15Bit0 | |---------------------------|-----------------------|------------------------------| | Communication Error Field | Device Error Field | Error Code (see Table below) | The 16 most significant bits are the Communication and Device Error fields of the manufacturer error register. The 16 least significant bits represent an error code with the following descriptions: | Error Code | Error Description | |------------|--------------------------------------| | 0000h | Error reset or no more error present | | 1030h | Generic error | | 4200h | Device temperature error | | 5000h | Self-test error or CRC memory error | | 5010h | Sensor error on X axis | | 5020h | Sensor error on Y axis | | 8110h | Receive\Transmit buffer overflow | | 8120h | CAN warning limit reached | | 8130h | Node guard event occurred | | 8140h | Recover from Bus-off | # 4.4. Emergency frames (EMCY) As any kind of error occurs, an emergency message (EMCY frame) is triggered and sent with high priority to the bus. When the emergency situation is recovered, an Error reset message is sent by the device. As shown in Table below, EMCY frames are structured with the COB-ID = 80h (specified at index 1014h) + Node ID, fol-lowed by the Emergency object that contains all the information related to the occurred error. The frame organization is shown in the table below. | | | Emergency Object | | | | | | | | | |----------|--------|------------------|----------|---------------------|----------------------------|----------|--------|--------|--|--| | COB-ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | | | | 80h+NID | Emerge | ncy error | Error | | Manufacturer specific erro | or field | | | | | | 8UII+NID | cc | de | register | Communication error | Device error | 00h | 00h | 00h | | | Register at index 1015h allows the user to set an inhibit time between two consecutive EMCY frames. In the set period, the client will not receive any EMCY frame. Bus overflow is thus limited when the device works close to error condi-tions. The 16-bit value is expressed in multiple of 100us. # Example: Let us set the device (Node-ID = 0Ah) in 2-axis mode and limit the X range to 10 degrees. Then let us check the EMCY transmitted as the inclination of 10 degrees is exceeded, and the subsequent Error reset message as the inclination returns to less than 10 degrees. 1. Send a SDO command to modify index 4001h, s.i. 00h, and write value 00h (2-axis mode). | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 01 | 40 | 00 | 00 | - | - | - | *In case of correct request, the following answer is received:* | 58A | 60 | 01 | 40 | 00 | 00 | 00 | 00 | 00 | |-----|----|----|----|----|----|----|----|----| Now set the X-measuring range at index 4000h. 2. Enable the user range (s.i. 03h): | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 00 | 40 | 03 | 01 | - | - | - | *In case of correct request, the following answer is received:* | | | 58A | 60 | 00 | 40 | 03 | 00 | 00 | 00 | 00 | |--|--|-----|----|----|----|----|----|----|----|----| |--|--|-----|----|----|----|----|----|----|----|----| 3. Set X-range to 10 degrees: pay attention that the value depends on the actual resolution. For a resolution of 0.01 degrees (index 6000h, s.i. 0, value = 10 = Ah), the correct value is 1000 = 3E8h. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 00 | 40 | 01 | E8 | 3 | - | - | *In case of correct request, the following answer is received:* | 58A | 60 | 00 | 40 | 01 | 00 | 00 | 00 | 00 | |-----|----|----|----|----|----|----|----|----| |-----|----|----|----|----|----|----|----|----| 4. Save the set parameters into the EEPROM as explained at paragraph 3.2.3 and reset the device. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 60A | 22 | 10 | 10 | 01 | 73 | 61 | 76 | 65 | 5. Set the device in operational state. | COB ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 00 | 01 | 0A | - | - | - | - | - | - | 6. Finally turn the IN360C over 10 degrees on the X-axis. The Emergency frame you will get is the following: | 8A | 10 | 50 | 21 | 00 | 02 | 00 | 00 | 00 | |----|----|----|----|----|----|----|----|----| |----|----|----|----|----|----|----|----|----| What does the message mean? - "8A" is the COB-ID for an EMCY frame - "10" is the low part of the error code, while "50" is the high part. The resulting error code is "5010h" as indicated in Table 29. - "21" is the Error register value, where Bit5 and Bit0 are active, meaning that there has been an error and it is a Profile specific error. - "00" is the Communication error of the Manufacturer error register. It means that no errors occured on the communication. - "02" is the Device error of the Manufacturer error register. Bit1 is active, meaning that the error occurred on X-axis. Now let us recover from the emergency situation and turn the inclinometer less than 10 degrees. An Error reset message will be received: the frame is an EMCY with updated error register values. ## 5. FAILURE MONITORING: HEARTBEAT AND NODEGUARDING / LIFEGUARDING As IN360C is configured for asynchronous transmissions, e.g. on inclination change, the transmission is not recurring, so the node could not be periodically controlled. The CANopen network uses two different protocols to monitor the nodes state: the *heartbeat* and the *nodeguard/lifeguard protocol*. One of these two protocols excludes the other: if both active, the *heartbeat* wins and *nodeguarding* is deactivated. ## 5.1. Hearbeat The *heartbeat* is a failure monitoring mechanism that is managed by the CAN slave (IN360C). If active, the node sends periodically a heartbeat message, which contains information relative to the state of the inclination sensor. The transmission of the *heartbeat frame* can be enabled by writing a value greater than zero into index 1017h, sub-index 00h. The value represents the interval between two heartbeat transmissions and is expressed in milliseconds. Values smaller than 50ms are automatically set to 50ms. The default value is zero, so no heartbeat transmission is set. The heartbeat message presents the following frame structure: | COBID | Byte 0 | Corresponding IN360C state | |-----------|--------|----------------------------| | 700h + ND | 00h | Boot up | | | 04h | Stop condition | | | 05h | Run condition | | | 7Fh | Pre-operational condition | ## 5.2. Nodeguarding and Lifeguarding The *Nodeguarding* is the monitoring of one or several nodes interfaced to the CANopen network through cyclic RTR frames. As the CAN master sends a *RTR message frame* to the node to be monitored, the requested node answers providing its state and a toggle bit. The toggle bit is toggled after every nodeguarding request. If the status/toggle bit does not match with the status/toggle bit expected, or no response is provided to the master, a slave error is assumed. This mechanism can be even used to detect master failures. In this case two parameters are used: the guard time and the life time factor. The guard time parameter specifies the interval between two state requests from the master and is defined at index 100Ch of the object dictionary. The life time factor is specified at index 100Dh and defines the time multiplier after which the connection with the master is assumed interrupted. This time is defined as the *node lifetime*: #### NODE LIFETIME = GuardTime x LifeTimeFactor If the node does not receive any guarding request from the master within the lifetime, a master failure is assumed and the device sends an *EMCY frame*. The node returns to the pre-operational state. ## 5.3. Status LED The two-color LED complies with CiA DR-303-3 specifications. Green LED is used as run LED indicator and red LED is used as error LED. The
tables below describe all LED configurations. | RUN LED | LED state | LED state description | |-----------|--------------|---------------------------------------| | ддддддддд | OFF | The device is switched off | | ддддддддд | Single flash | The device is in Stop mode | | ддддддддд | Blinking | The device is in Pre-operational mode | | дицицици | ON | The device is in Operational mode | | ERROR LED | LED state | LED state description | |---|--------------|-------------------------------------| | ппипппппппппппппппппппппппппппппппппппп | OFF | The device is in working conditions | | n n n n n n n n n n n n | Single flash | CAN warning limit reached | | z z z z z z z z z z z z z z z z z z z | Blinking | Loss of Guarding-master detected | | пипипипипи | ON | The device is in state Bus-Off |